

Bullet Bond Mist Canister Spray Adhesive QUIN GLOBAL ASIA PACIFIC

Version No: 4.4

Chemwatch Hazard Alert Code: 4

Issue Date: **27/04/2023** Print Date: **27/04/2023** S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Product Identifier		
Product name	Bullet Bond Mist Canister Spray Adhesive	
Synonyms	Not Available	
Proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S. (contains dimethyl ether)	
Other means of identification	Not Available	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Adhesives

Details of the manufacturer or supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC	
Address	3 Hincksman Street Queanbeyan, NSW 2620 Australia	
Telephone	+61 2 6175 0574	
Fax	Not Available	
Website	www.quinglobal.com	
Email	sales@quinglobal.com.au	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2, Skin Corrosion/Irritation Category 2, Gases Under Pressure (Liquefied Gas), Aspiration Hazard Category 1, Flammable Gases Category 1A	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIs; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.

Version No: 4.4 Page 2 of 17 Issue Date: 27/04/2023 Print Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

H411	Toxic to aquatic life with long lasting effects.
AUH044	Risk of explosion if heated under confinement.
H315	Causes skin irritation.
H280	Contains gas under pressure; may explode if heated.
H304	May be fatal if swallowed and enters airways.
H220	Extremely flammable gas.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P271	Use only outdoors or in a well-ventilated area.
P261	Avoid breathing gas.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

Troductionary outcomonico		
IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.		
Do NOT induce vomiting.		
Leaking gas fire: Do not extinguish, unless leak can be stopped safely.		
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.		
If eye irritation persists: Get medical advice/attention.		
In case of leakage, eliminate all ignition sources.		
Collect spillage.		
IF ON SKIN: Wash with plenty of water and soap.		
IF INHALED: Remove person to fresh air and keep comfortable for breathing.		
If skin irritation occurs: Get medical advice/attention.		
Take off contaminated clothing and wash it before reuse.		

Precautionary statement(s) Storage

P405	P405 Store locked up.	
P410+P403	P410+P403 Protect from sunlight. Store in a well-ventilated place.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64-17-5	<10	ethanol
64742-49-0.	10-20	naphtha petroleum, light, hydrotreated
110-82-7	10-20	cyclohexane
67-64-1	<10	acetone
115-10-6	40-50	dimethyl ether
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes: ▶ Wash out immediately with fresh running water.

Eye Contact

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:

▶ Immediately remove all contaminated clothing, including footwear.

Version No: 4.4 Page 3 of 17 Issue Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

	 Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. for lower alkyl ethers:

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors
- Treat seizures with diazepam
- Proparacaine hydrochloride should be used to assist eye irrigation

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated
- Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For gas exposures:

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam
- Proparacaine hydrochloride should be used to assist eye irrigation.

Version No: 4.4 Page 4 of 17 Issue Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

- ► Water spray or fog.
- ► Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fire Fighting
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

▶ Remove all ignition sources.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

BEWARE: Empty solvent, paint, lacquer and flammable liquid drums present a severe explosion hazard if cut by flame torch or welded. Even when thoroughly cleaned or reconditioned the drum seams may retain sufficient solvent to generate an explosive atmosphere in the drum.

HAZCHEM

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite.

▶ Wash area and prevent runoff into drains

Collect solid residues and seal in labelled drums for disposal.

If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Version No: 4.4 Page 5 of 17 Issue Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- \cdot Electrostatic discharge may be generated during pumping this may result in fire.
- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- · Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec).
- · Avoid splash filling.
- · Do NOT use compressed air for filling discharging or handling operations.
- · Wait 2 minutes after tank filling (for tanks such as those on
- · road tanker vehicles) before opening hatches or manholes.
- · Wait 30 minutes after tank filling (for large storage tanks)
- · before opening hatches or manholes. Even with proper
- · grounding and bonding, this material can still accumulate an
- · electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable
- · air-vapour mixtures can occur. Be aware of handling
- · operations that may give rise to additional hazards that result
- · from the accumulation of static charges. These include but are
- · not limited to pumping (especially turbulent flow), mixing,
- · filtering, splash filling, cleaning and filling of tanks and
- · containers, sampling, switch loading, gauging, vacuum truck
- · operations, and mechanical movements. These activities may
- · lead to static discharge e.g. spark formation. Restrict line · velocity during pumping in order to avoid generation of
- · electrostatic discharge (= 1 m/s until fill pipe submerged to
- · twice its diameter, then = 7 m/s). Avoid splash filling.
- · Do NOT use compressed air for filling, discharging, or handling operations

Other information

Storage incompatibility

Safe handling

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable container
 - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Dimethyl ether:

- is a peroxidisable gas
- may be heat and shock sensitive
- is able to form unstable peroxides on prolonged exposure to air
- reacts violently with oxidisers, aluminium hydride, lithium aluminium hydride
- is incompatible with strong acids, metal salts

Low molecular weight alkanes:

- ▶ May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Cyclohexane

- reacts violently with strong oxidisers, nitrogen tetraoxide
- may generate electrostatic charges, due to low conductivity, following flow or agitation

Ethers

- $\boldsymbol{\cdot}$ may react violently with strong oxidising agents and acids.
- can act as bases. they form salts with strong acids and addition complexes with Lewis acids; the complex between diethyl ether and boron trifluoride is an example.
- · are generally stable to water under neutral conditions and ambient temperatures.
- · are hydrolysed by heating in the presence of halogen acids, particularly hydrogen iodide
- · are relatively inert In other reactions, which typically involve the breaking of the carbon-oxygen bond

Version No: **4.4** Page **6** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

- The tendency of many ethers to form explosive peroxides is well documented.
- Fethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe.
- When solvents have been freed from peroxides (by percolation through a column of activated alumina for example), the absorbed peroxides must promptly be desorbed by treatment with the polar solvents methanol or water, which should be discarded safely.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethanol	Ethyl alcohol	1000 ppm / 1880 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	cyclohexane	Cyclohexane	100 ppm / 350 mg/m3	1050 mg/m3 / 300 ppm	Not Available	Not Available
Australia Exposure Standards	acetone	Acetone	500 ppm / 1185 mg/m3	2375 mg/m3 / 1000 ppm	Not Available	Not Available
Australia Exposure Standards	dimethyl ether	Dimethyl ether	400 ppm / 760 mg/m3	950 mg/m3 / 500 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
ethanol	Not Available	Not Available	15000* ppm
naphtha petroleum, light, hydrotreated	1,000 mg/m3	11,000 mg/m3	66,000 mg/m3
cyclohexane	300 ppm	1700* ppm	10000** ppm
acetone	Not Available	Not Available	Not Available
dimethyl ether	3,000 ppm	3800* ppm	7200* ppm

Ingredient	Original IDLH	Revised IDLH
ethanol	3,300 ppm	Not Available
naphtha petroleum, light, hydrotreated	Not Available	Not Available
cyclohexane	1,300 ppm	Not Available
acetone	2,500 ppm	Not Available
dimethyl ether	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
naphtha petroleum, light, hydrotreated	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- F Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- F Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Appropriate engineering controls

Version No: **4.4** Page **7** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Individual protection measures, such as personal protective equipment

Eye and face protection

Safety glasses with side shields.

- ► Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

Insulated gloves:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

See Other protection below

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- **▶** C

Other protection

- Overalls.PVC Apron.
- PVC protective suit may be required if exposure severe.
- ► Eyewash unit.
- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index"

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Bullet Bond Mist Canister Spray Adhesive

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 50 x ES	Air-line*	-	-
up to 100 x ES	-	AX-3	-
100+ x ES	-	Air-line**	-

- * Continuous-flow; ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
 - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in

Print Date: 27/04/2023

Version No: 4.4 Page 8 of 17 Issue Date: 27/04/2023 Print Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

VITON	С
VITON/NEOPRENE	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

 * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquified Gas	Relative density (Water = 1)	0.709
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	350
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Applicable
Melting point / freezing point (°C)	-141.5	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	-24.8	Molecular weight (g/mol)	Not Available
Flash point (°C)	-41.1	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	3.4	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	18.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	434	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	1.6	VOC g/L	554.01

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

Version No: **4.4** Page **9** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

SECTION 11 Toxicological information

Information on toxicological effects

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Following inhalation, ethers cause lethargy and stupor. Inhaling lower alkyl ethers results in headache, dizziness, weakness, blurred vision, seizures and possible coma.

Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Inhaled

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Rabbits survived 8 hour exposures to cyclohexane at 18500 ppm but 26600 ppm was lethal after 1 hour exposure. A concentration of 12600 ppm produced severe weakness, unconsciousness, increased breathing and convulsions while 3330 ppm failed to elicit an effect. 300 ppm is reported to be irritating to human eyes and mucous membranes.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Ingestion of alkyl ethers may produce stupor, blurred vision, headache, dizziness and irritation of the nose and throat. Respiratory distress and asphyxia may result.

Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea.

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Skin Contact

This material can cause inflammation of the skin on contact in some persons.

The material may accentuate any pre-existing dermatitis condition
Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have occurred.

Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system

depression.

prior to the use of the material and ensure that any external damage is suitably protected.

Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin

Eve

This material can cause eye irritation and damage in some persons.

Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Eye contact with alkyl ethers (vapour or liquid) may produce irritation, redness and tears.

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

Chronic

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems.

There is sufficient evidence to suggest that this material directly causes cancer in humans. Ample evidence exists that this material directly causes reduced fertility

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss.

Prolonged exposure to ethanol may cause damage to the liver and cause scarring. It may also worsen damage caused by other agents.

 $Chronic \ solvent \ inhalation \ exposures \ may \ result \ in \ nervous \ system \ impairment \ and \ liver \ and \ blood \ changes. \ [PATTYS]$

Bullet Bond Mist Canister Spray Adhesive	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
ethanol	Dermal (rabbit) LD50: 17100 mg/kg ^[1]	Eye (rabbit): 500 mg SEVERE
	Inhalation(Rat) LC50: 64000 ppm4h ^[2]	Eye (rabbit):100mg/24hr-moderate
	Oral (Rat) LD50: 7060 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit):20 mg/24hr-moderate
		Skin (rabbit):400 mg (open)-mild
		Skin: no adverse effect observed (not irritating) ^[1]

 Version No: 4.4
 Page 10 of 17
 Issue Date: 27/04/2023

 Print Date: 27/04/2023
 Print Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

	TOXICITY	IRRITATION	
naphtha petroleum, light,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
hydrotreated	Inhalation(Rat) LC50: >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
cyclohexane	Inhalation(Rat) LC50: >5540 ppm4h ^[1]	Skin(rabbit): 1548 mg/48hr - mild	
	Oral (Rat) LD50: 12705 mg/kg ^[2]	Skin: adverse effect observed (irritating) $[1]$	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 20000 mg/kg ^[2]	Eye (human): 500 ppm - irritant	
	Inhalation(Mouse) LC50; 44 mg/L4h ^[2]	Eye (rabbit): 20mg/24hr -moderate	
	Oral (Rat) LD50: 5800 mg/kg ^[2]	Eye (rabbit): 3.95 mg - SEVERE	
acetone		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit): 500 mg/24hr - mild	
		Skin (rabbit):395mg (open) - mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
dimethyl ether	Inhalation(Rat) LC50: >20000 ppm4h ^[1]	Not Available	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Bullet Bond Mist Canister Spray Adhesive

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

DHC Solvent Chemie (for EC No.: 926-605-8)

For Low Boiling Point Naphthas (LBPNs):

Acute toxicity:

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies

Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in

NAPHTHA PETROLEUM, LIGHT, HYDROTREATED

these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline

Version No: **4.4** Page **11** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

(containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assays.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

The High Benzene Naphthas (HBNs) contain mainly benzene but its adverse health effect is more with other components, which may cause adverse health effects involving a variety of organs. They may produce genetic damage as well as effects on reproduction and the unborn baby (generally at levels toxic to the mother). They may also cause cancers.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

CYCLOHEXANE

Bacteria mutagen

For acetone:

ACETONE

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitizer, but it removes fat from the skin, and it also irritates the eye. Animal testing shows acetone may cause macrocytic anaemia. Studies in humans have shown that exposure to acetone at a level of 2375 mg/cubic metre has not caused neurobehavioural deficits.

Bullet Bond Mist Canister Spray Adhesive & NAPHTHA PETROLEUM, LIGHT, HYDROTREATED

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the

Version No: 4.4 Page 12 of 17 Issue Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

	gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.		
ETHANOL & ACETONE	The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.		
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Legend:

X - Data either not available or does not fill the criteria for classification 🥓 – Data available to make classification

SECTION 12 Ecological information

Toxicity

Bullet Bond Mist Canister	Endpoint	Test Duration (hr)	Species		Value	Source
Spray Adhesive	Not Available	Not Available	Not Available		Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species		Value	Sourc
	EC50(ECx)	96h	Algae or other aqua	Algae or other aquatic plants		4
	EC50	72h	Algae or other aqua	tic plants	275mg/l	2
ethanol	LC50	96h	Fish		42mg/l	4
	EC50	96h	Algae or other aqua	tic plants	<0.001mg/L	4
	EC50	48h	Crustacea		2mg/l	4
	Endpoint	Test Duration (hr)	Species		Value	Source
	NOEC(ECx)	504h	Crustacea		0.17mg/l	2
naphtha petroleum, light, hydrotreated	LC50	96h	Fish		4.26mg/l	2
nyuroneateu	EC50	96h	Algae or other aq	uatic plants	64mg/l	2
	EC50	48h	Crustacea		0.64mg/l	2
	Endpoint	Test Duration (hr)	Species		Value	Source
	BCF	1344h Fish			31-102	7
	LC50	96h Fish			4.53mg/l	2
cyclohexane	EC50	72h Algae or other aquatic plants		atic plants	3.428mg/l	2
	EC50	48h Crustacea			0.9mg/l	2
	EC50(ECx)	48h Crustacea			0.9mg/l	2
	EC50	96h	Algae or other aqu	atic plants	2.17mg/l	2
	Endpoint	Test Duration (hr)	Species	Val	ue	Source
	NOEC(ECx)	12h	Fish	0.0	01mg/L	4
	LC50	96h	Fish	374	3744.6-5000.7mg/L	
acetone	EC50	72h	Algae or other aquatic plants		5600-10000mg/l	
	EC50	96h	Algae or other aquatic	plants 9.8	9.873-27.684mg/l	
	EC50	48h	Crustacea 6		8.4mg/L	5
	Endpoint	Test Duration (hr)	Species		Value	Source
	LC50	96h	Fish		1783.04mg/l	2
dimethyl ether	EC50	48h	Crustacea		>4400mg/L	2
	NOEC(ECx)	48h	Crustacea		>4000mg/l	1
	EC50	96h	Algae or other aqua	tic plants	154.917mg/l	2

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

- Bioconcentration Data 8. Vendor Data

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway.

Version No: **4.4** Page **13** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes:
- (3) alkenes:
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics:
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

Most ethers are very resistant to hydrolysis, and the rate of cleavage of the carbon-oxygen bond by abiotic processes is expected to be insignificant.

Direct photolysis will not be an important removal process since aliphatic ethers do not absorb light at wavelengths >290 nm

For n-Heptane: Log Kow: 4.66; Koc: 2400-8100; Half-life (hr) Air: 52.8; Half-life (hr) Surface Water: 2.9-312; Henry's atm m3 /mol: 2.06; BOD 5 (if unstated): 1.92; COD: 0.06; BCF: 340-2000; Log BCF: 2.53-3.31.

Atmospheric Fate: Breakdown of n-heptane by sunlight is not expected to be an important fate process. If released to the atmosphere, n-heptane is expected to exist entirely in the vapor phase, in ambient air. Reactions hydroxyl radicals in the atmosphere have been shown to be important. Night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane is not expected to be susceptible to direct breakdown by sunlight

Terrestrial Fate: n-Heptane is expected to be broken down by biological processes in the soil; however, evaporation and adsorption from soil are expected to be a more important fate processes. n-Heptane will be slightly mobile to immobile in soil.

Aquatic Fate: Breakdown of n-heptane by water is not expected to be an important fate process.

Biological breakdown may occur in water; however, evaporation is expected to be a more important fate process. The evaporation half-life for the substance from a model river is 2.9 hours and from a model pond is 13 days. In aquatic systems, n-heptane may partition from the water column to organic matter in sediments and suspended solids.

Ecotoxicity: Concentration of the substance in aquatic life may be important in aquatic environments. The substance is moderately toxic to goldfish; however n-heptane has low toxicity to golden orfe, western mosquitofish, Daphnia magna water fleas, and snail. The substance is toxic to opossum shrimp.

For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its

Version No: 4.4 Page 14 of 17 Issue Date: 27/04/2023

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

For Cyclohexanes: log Kow: 3.44; Water Solubility: 54.8 mg/L (25 C); Vapor Pressure: 97.6 mm Hg (25 C); Henry s Law Constant: 0.193 atm-m3/mole; Koc: 480; Half-life (hr) air: 6-52; Half-life (hr) H2O surface water: 2; ThOD: 3.42. BCF: 242.

Atmospheric Fate: In the atmosphere, cyclohexane will degrade by reaction with photochemically produced hydroxyl radicals (half-life 52 hours). Photodegradation occurs in about 6 hours in the presence of nitrogen oxides (photochemical smog conditions). The reactivity of cyclohexane is relatively low. Cytohexanes should not be subject to direct photolysis Aquatic Fate: Volatilization from water should be the most important fate process in aquatic systems and is expected to be rapid with the rate being controlled by diffusion through the liquid phase

Terrestrial Fate: Cyclohexane will volatilize and is expected to leach into the ground. Cyclohexane is resistant to biodegradation but may slowly biodegrade in the presence of other hydrocarbons that are themselves biodegraded. Moderate soil absorbability is expected. Small interactions with soil adsorbents and absorptivity was only casually related to the organic carbon content of sediment.

Biodegredation: Cyclohexanes are highly resistant to biodegradation and do not support growth of the degrading organism themselves but are metabolized during the course of the microorganisms growth on another, usually similar substrate.

Ecotoxicity: Some bioconcentration is expected. Significant risk of bioaccumulation is likely. Cyclohexanes are slightly toxic to fathead minnow, bluegill sunfish and guppy and not acutely toxic to Daphnia magna water flea, algae or Photobacterium phosphoreum bacteria.

For Acetone: log Kow : -0.24:

ThOD: 2.2BCF: 0.69.

Half-life (hr) air : 312-1896: Half-life (hr) H2O surface water : 20: Henry's atm m3 /mol : 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07

Environmental Fate: The relatively long half-life allows acetone to be transported long distances from its emission source.

Atmospheric Fate: Acetone preferentially locates in the air compartment when released to the environment. In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals: the estimated half-life of these combined processes is about 22 days. Air Quality Standards: none available

Terrestrial Fate: Very little acetone is expected to reside in soil, biota, or suspended solids and has low propensity for soil absorption and a high preference for moving through the soil and into the ground water. Acetone released to soil volatilizes although some may leach into the ground where it rapidly biodegrades. Soil Guidelines: none available

Aquatic Fate: A substantial amount of acetone can also be found in water, Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours Drinking Water Standard: none available.

Ecotoxicity: Acetone does not concentrate in the food chain, is minimally toxic to aquatic life and is considered to be readily biodegradable. Testing shows that acetone exhibits a low order of toxicity for brook trout, fathead minnow, Japanese quail, ring-neck pheasant and water fleas. Low toxicity for aquatic invertebrates. For aquatic plants, NOEC: 5400-7500 mg/L. Acetone vapours were shown to be relatively toxic to flour beetle and flour moths and their eggs. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. Mild to moderate toxicity occurred in bacteria exposed to acetone for 6-4 days however, overall data indicates a low degree of toxicity for acetone. The only exception to these findings was the results obtained with the flagellated protozoa (Entosiphon sulcatum).

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ethanol	LOW (Half-life = 2.17 days)	LOW (Half-life = 5.08 days)
cyclohexane	HIGH (Half-life = 360 days)	LOW (Half-life = 3.63 days)
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
dimethyl ether	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
ethanol	LOW (LogKOW = -0.31)	
cyclohexane	LOW (BCF = 242)	
acetone	LOW (BCF = 0.69)	
dimethyl ether	LOW (LogKOW = 0.1)	

Mobility in soil

Lu anna Panas	M-1 77-
Ingredient	Mobility
ethanol	HIGH (KOC = 1)
cyclohexane	LOW (KOC = 165.5)
acetone	HIGH (KOC = 1.981)
dimethyl ether	HIGH (KOC = 1.292)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Version No: **4.4** Page **15** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

2YE

Land transport (ADG)

UN number or ID number	3501	
UN proper shipping name	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S. (contains dimethyl ether)	
Transport hazard class(es)	Class 2.1 Subsidiary risk Not Applicable	
Packing group	Not Applicable	
Environmental hazard	Environmentally hazardous	
Special precautions for user	Special provisions 274 362 Limited quantity 0	

Air transport (ICAO-IATA / DGR)

UN number	3501			
UN proper shipping name	Chemical under pressure	Chemical under pressure, flammable, n.o.s. * (contains dimethyl ether)		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L		
Packing group	Not Applicable			
Environmental hazard	Environmentally hazardo	ous		
Special precautions for user		Qty / Pack Packing Instructions	A1 A187 218 75 kg Forbidden Forbidden Forbidden Forbidden	

Sea transport (IMDG-Code / GGVSee)

UN number	3501	
UN proper shipping name	CHEMICAL UNDER	PRESSURE, FLAMMABLE, N.O.S. (contains dimethyl ether)
Transport hazard class(es)		2.1 Not Applicable
Packing group	Not Applicable	
Environmental hazard	Marine Pollutant	
Special precautions for user	EMS Number Special provisions Limited Quantities	

Version No: **4.4** Page **16** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
ethanol	Not Available
naphtha petroleum, light, hydrotreated	Not Available
cyclohexane	Not Available
acetone	Not Available
dimethyl ether	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
ethanol	Not Available
naphtha petroleum, light, hydrotreated	Not Available
cyclohexane	Not Available
acetone	Not Available
dimethyl ether	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

ethanol is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

naphtha petroleum, light, hydrotreated is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

cyclohexane is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

acetone is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $5\,$

Australian Inventory of Industrial Chemicals (AIIC)

dimethyl ether is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (ethanol; naphtha petroleum, light, hydrotreated; cyclohexane; acetone; dimethyl ether)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (naphtha petroleum, light, hydrotreated)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	27/04/2023
Initial Date	16/05/2022

Version No: **4.4** Page **17** of **17** Issue Date: **27/04/2023**

Bullet Bond Mist Canister Spray Adhesive

Print Date: 27/04/2023

SDS Version Summary

Version	Date of Update	Sections Updated
3.4	27/04/2023	Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Exposure controls / personal protection - Engineering Control, Ecological Information - Environmental, Exposure controls / personal protection - Exposure Standard, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire/explosion hazard), Firefighting measures - Fire Fighter (fire fighting), First Aid measures - First Aid (eye), First Aid measures - First Aid (inhaled), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Exposure controls / personal protection (other), Exposure controls / personal protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (major), Accidental release measures - Spills (minor), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (suitable container), Transport information - Transport

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.